Search

China's FAST telescope detects binary pulsar with orbital period of 53.3 minutes

Fantastic China  | 2023-06-25 | Views:3823


This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This photo taken on June 22, 2023 shows the feed cabin of China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial panoramic photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This photo taken with a fish-eye lens on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial panoramic photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial panoramic photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial panoramic photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial panoramic photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



This aerial photo taken on June 22, 2023 shows China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) under maintenance in southwest China's Guizhou Province. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)



A staff member performs a regular maintenance operation on China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST) in southwest China's Guizhou Province, June 22, 2023. China's FAST telescope identified a binary pulsar with an orbital period of 53.3 minutes, the shortest known period for a pulsar binary system.

The research, mainly conducted by a team led by scientists from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), was published in the journal Nature Wednesday. (Xinhua/Ou Dongqu)

Tags:
Share: